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ABSTRACT 

A method for the analysis of a transonic flow field in 
a nearly circular duct with gradual changes in cross-section 
is developed. A linearized differential equation for the 
deviation from the results of the one-dimensional theory is 
presented and is solved by the superposition of particular 
solutions obtained by a product hypothesis. The potential 
equation, in this case, was'simplified for the vicinity of 
the sonic velocity. 

Application to a circular subsonic-supersonic duct is 
made in order to determine the magnitude of propagated sub- 
sonic disturbances and the resulting velocity distribution. 
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LIST OF SYMBOLS 

a velocity of sound 

a* functions of x fulfilling differential equation for (p 

r radius of the duct 

x, y,to cylindrical coordinates 

^-U)K functions of y fulfilling differential equation for <p 

2f ratio of specific heats,  for air    y- iJi 

<b total velocity potential 

<D perturbation velocity potential 

<PS one-dimensional flow potential 

<p deviation from one-dimensional flow potential 

SUBSCRIPTS 

x, y, cü refer to partial derivatives with respect to the cylindri- 
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o refers to symmetric duct configuration 

u refers to unsymrastric duct configuration 

SUPERSCRIPTS 

* refers to conditions at the duct throat 

refers to partial derivatives with respect to the 
x coordinate 
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SECTION I 

INTRODUCTION 

This report presents an analytical method for the calculation of 
the flow field in a nearly circular duct with relatively gradual changes 
in cross-section. Due to simplifications introduced by means of the 
transonic law of similarity, the method in its present form would be 
restricted to flow fields with Mach numbers close to unity. 

The investigation was initiated in connection with a plan for 
modifying the 10-Foot Wind Tunnel at Wright-Patterson Air Force Base. 
It was intended to vary the cross-sectional area with small inserts, 
rather than by a variation of the radius. A method was evolved to 
obtain the magnitude of deviations from the ideal parallel flow which 
might be caused by such an insert design. Before the actual computa- 
tions were made the design was modified* However, the method itself 
is of interest, in that there are many other applications. An appli- 
cation, referring mainly to a modified test section design, will be 
given in the second part of this report. 

The present analysis begins with a basic flow as given by one- 
dimensional theory. Any deviations from the basic flow are considered 
small, so that they can be determined by a linearised partial differen- 
tial equation. The general solution to the differential equation is 
expressed by the superposition of particular solutions, each of which 
is the product of a Bessel function dependent on the radial distance 
y from the duct axis, a trigonometric function of the angular position 
«, and a function of the axial position, x. Of special interest is 
the last function which is influenced by the duct shape. 

If one is interested only in supersonic flow analysis, an alternate 
method of computation is the well-known method of characteristics. The 
method Of characteristics is more general, in that the condition of a 
slow change in cross-section is not required. The method of character- 
istics for three dimensions is similar to the present method in the 
requirement of a nearly circular cross-section. The major advantages 
of the present method are that the subsonic influences can be deter- 
mined and that being essentially more analytical, a better picture of 
the flow behavior in general cases may be obtained. In some cases, 
depending upon the duct shape, the solutions can be obtained in a 
less tedious manner. 

Briefly, the report starts with the simplification of the general 
flow differential equation by means of the transonic law of similarity. 
Then a general method of solution is developed, and finally this result 
is applied to some specific example. 

AP-TR-5790 



SECTION II 

THEORETICAL CONSIDERATIONS 

Simplification of the Plow Differential Equation Near the Sonic Speed 

This analysis is based on a cylindrical coordinate system (Figure 1). 
Let the x axis be the duct center line, y, the radial distance from the 
x axis, and <*> , the angular position measured clockwise from the vertical 
position. The velocity potential is denoted by $ . Partial derivatives 
are denoted by subscripts (i.e., «.= <|>-) 

The general three-dimensional equation for a steady potential flow 
(derived in Appendix A) is given by 

(i.i) <Mi-|C)-a<h,,(W+<Mi-*i)+ ^V10 

If deviations from a parallel sonic flow are small, the simplified 
transonic equation results. (Derivation may be found in Appendix B). • 

(1.2)   -U+i><p„q>Äi.<pYr+ai+ ^=o 

where       ^ - i 

(1.3)  <P<*,y^J-«(*--«y 

and    r0     is the radius at the throat. 

The Pressure and Density Relations 

The new potential term   <P(x,y)is directly related to the velocity. 

However, one may be interested in the pressure and density relations at 
various positions along the duct.    Bernoulli's law for compressible non- 
viscous gases is given by 

(1.1»)    ^l+UAa + VAV = 

The last terra is negligible, based on earlier assumptions. 
Because    AU.= <PU a.    , one can write 

*       * Since    fc-& - Q. , the preceding equation is rewritten as 

AF-TR-579Q 



(1.5) A£=-^cp, 

The Boundary Conditions 

Let 7 be the value of y at a point on the duct surface so that 
r - r (x, o>). This function, in the case of a vertical line of symmetry 
is expressed as 

(1.6) r = r0 C*) ■»• 1 fa (x) cos vto,) 

The functions r0, rj_, r2, rn are obtained by a Fourier analysis 
at the specific x positions, and are written as 

(1.6a)   r0(x)=^  \   r(%,ürt duy 

(1.6b)  YV,^= I    Y(%,L»)   cos *»o>   dw 

Let r - 
r0 

The boundary condition of aero flow normal to the duct surface must 
be fulfilled. If the differences from the sonic velocity are small, 
this condition is expressed as 

(The derivation may be found in Appendix C). 

Let us introduce for the slope 

(1.6)  -6-=^ 

Then one has the relation 

(1.9)  <Py = ^ + I«Ö-v Cos VO> 

k/here "©-v is an additional slope for the unsymmetrical configurations. 

The Basic Hypothesis for the Solution 

The solution is based on one-djjaensional flow theory, in which the 
velocity distribution over each cross section is considered constant. 
The cross section is written as functions of the distance from the 

AF-Tii-5790 3 



minimum cross-section.    The potential of this basic flow is denoted by <PB 

, where     -yjj^* = Q?©< = "p(r,r^.   Specifically, as derived in Appendix 
D, this gives 

The entire potential is expressed by 

(1.11) Cpr <pB(%H <P(Vr,co) 

The <P represents the deviations from the basic flow, and shall be 
considered small enough that higher order terms can be neglected. If the 
values of the complete potential (Equation (1.11)) is inserted into the 
transonic differential equation (Equation (1.2)) and second order terms 
of Qp are neglected, the following Inhomogeneous equation Is given» 

(1.12) -C«*0C<fcll*M*<^5,Wfyr + ^ + ^)=ft*')<*,<fc« 

For the representation of <P , let us introduce the following functions. 
Let a Bessel function of V th order and of the argument VI   be denoted by Tv fa}). 
Let >jVj» be the y>th argument (where y*. - 1, 2, 3 . . .) of the Bessel 

function Jv , for which * *» * V = o  .The functions HVv».are given by 

(1.13) Zv>fcCyWv(Y ^r) 

The functions    2Vu.    fulfill the following differential equation 

There exists a relationship of orthogonality between the   2Vf4 , so 
that for y. pfe v ~ 

.15) j Y ?v^ £v>* <*y=o (1 

Let us introduce 

(1.16) \ Y Zjy. <*y-Kv>» 
Jo 

A hypothesis for the perturbation velocity potential is chosen in such a way 
that the boundary conditions are fulfilled. 

AF-TR-5790 



The functions «^(irt  and a*,*«) ( V - 1, 2, 3 . . . ) must 
be determined in such a way that the differential equations for <D 
(Equation (1.12) is fulfilled. Inserting this hypothesis into Equation 

(1.12), one obtains 

(i.is)       +ae, -OM[<P,«£ 1,^ *vr 
cos v<^* <*>*** 

I, i w* ^ <•• ->] «J i ^ (% vi 'u 

* *** «Lsr - £ Zv^ cos vU) - <*♦')[ 2   * Y* 

cos vo,(c9e, < v q>e„eC)] = -^♦|K^B»*<fc«») 

All the terms of this equation which contain trigonometric terms of 
(where V - 1, 2, 5, h,  etc.) must vanish separately. 

For V - 0 one has the condition 

(i.i9)      *|tOL.,. (ii*8 + A **»V<«*,>[£(<«H«C*«fc.,*'5| 

The conditions for "V - 1, 2, 3, . . . are^ 

It can readily be seen from Equation (1.10) that 

(i.2i) ee0= -(*+*) cpB^ q>BXJ1 

AF-TR-5790 5 



Further simplifications are made using Equation (1.11+) with Equa- 
tions (1.19) and (1.20), respectively. 

(i.22) -"*•>IX**c<^ °-;'+^e.» °^)] 

(1.23)   -(<+•)J,Lev>«*,a^+
<PB„

a»VV| 

The equations for the perturbation functions CXWj*. are obtained 
by multiplying with the term y Zrv;*. and integrating between y ■ 0 to 
y ■ 1. Because of the orthogonality relations for the Bessel functions, 
all with the terms J* y £v^.2.y/, dy    drop out except for ^rv . 
Inserting these relations in Equations (1.22) and (1.23) one obtains 
Equations (1.21+) and (1.25), respectively. 

(1.2«   V^«»^^6"^^^] 

where 

(1.25)     K^vf^o^W y34y = ä J„(y >;> 

(1.26)   I^a f fc.^y) y 4y = -^T.Vy *jv) 

(Derivation may be found in the Appendix E). Also, 

(i.2s)        1,^ = I" S„r (y) y <»y = XOv V) 

(1.29)     V<v-=£ £vr(/> 7
V+' 4V * ^J^v (Vf) 

From Equations (1.21+) and (1.27), and the boundary conditions which 
will be given later, the values of o.«^.can be found. The resulting 
expression for the perturbation potential (Equation (1.17)) is written in 
a more convenient manner if one expresses the 1/2 y^ and ^ yv by means 
of ZSffcand 2^ .       ( 



whare 

Let us introduce 

(1.30) t>0^ 4- <LayL -  <x0^ 

(1.31) bVfx + o-v^= o?vyA 

The perturbation potential is then based entirely in terms of the 
functions  &-**». so that 

One can then write the differential equations for o>v^. by the 
introduction of Equations (1.30) and (1.31) into Equations (1.22+) and 
(1.27). _t 

(I.«)  <PB, <'+ <PB„ <> *%■ **•» - fe„ k <*• 

C(> and its first derivatives with respect to x are continuous. 
Therefore, according to this relation, <*•„«. and their first derivatives 
are continuous. 

One might ask why the hypothesis (Equation (1.32)) was not used 
from the beginning instead of Equation (1.17). The reason is that the 
second derivative with respect to y does not converge (because of the 
character of the function yw ). Therefore, all of the considerations 
regarding the fulfillment of the differential equation for C^ would 
have been meaningless. 

Method of Solution 

The solution of the perturbation functions  <*-v/* for the differen- 
tial equations (1.33) and (1.3i\) is found for any duct, within the defined 
limitations, by means of numerical integration. For suitable configurations, 
analytical solutions can be found. In some cases, a piecewise analytical 
solution may be satisfactory. In any case, the pressure distribution 
along the axis is influenced only by the expressions with V - 0, since 
the nature of higher order Bessel functions is such that there is no 
effect along the axis. 

Deviation from a parallel flow are found from <P^. The only expres- 
sions which are of Importance along the axis are those for V ■ 0 and 
» ■ 2. Actually, an infinite number of terms are needed to describe 

the flow completely, but the higher terms in »*• and v are very small 
and are of influence only close to the wall. 

AF-TR-5790 



Conditions for the Solution of Equations (1.55) and (1.5li) 

Equations (1.55) and 0-»3k)  are of the second order, and consequently 
the solutions must be determined by two boundary conditions. The first 
condition is obvious. With the assumption of a subsonic duct extending 
to negative infinity, one may assume that the values of the perturbation 
terms <x.v~ should vanish as one approaches negative infinity. 

The character of the second condition is less obvious. One may 
first ask at which point such a condition might be given. Certainly it 
cannot be a point in the supersonic region, for the fulfillment of the 
condition will affect the entire solution, including points upstream of 
the point where the boundary condition is given. Since this would 
violate the law of the forbidden signals, the location of the other 
condition should be expected to be in the subsonic region. Actually, 
mathematical reasoning leads to the location of the boundary condition 
at the narrowest cross-section. If one rewrites Equations (1.53) and 
(1.31*) in such a way that the coefficient of the highest derivative of 
the term o.*^ is one, the coefficients of the other terms become singular 
at the sonic velocity. The solution of the differential equation may be 
singular at any point where these coefficients are singular. 

Consider now only the solutions of the homogeneous part of the dif- 
ferential equation, since the influence of change in the arbitrary 
constants and consequently, the influence of the boundary condition is 
limited to that part. Let the basic flow velocity be represented by 
^B#— X • Then the two linearly independent solutions of the homogeneous 
differential equation are represented by 

(1.55) <£y> = P (*) 
(1.56) O^ = X"* p(*) 

where P denotes a power series of x, which starts with the absolute terra. 

As the term *$&* approaches zero (at the throat) we have Si >° . Then 

the expression o.Vr , fr0m Equation (1.56) will tend to infinity as "*.•*■ O . 
Since this is physically impossible, the second condition is that 
remains finite at the throat. 

To summarize the boundary conditions, the flow deviation expressions 

o.w^ must be finite at x - 0 and zero as *-*•-••, 

SECTION IH 

APPLICATIONS 

Flow Through A Circular Subsonic-Supersonic Duct 

We apply this theory to an axially-synmetric transonic duct configura- 
tion. This duct is similar to the modified 10-Foot Wind Tunnel test section 
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at „righVPatterson Air Pore. Ba£The f^^f^tSlio 
(Section A, Figures It and 5) »^^V*! „£!»*, conicaUy (Section 0). 
profile (Section B), and ^^.^Jtat^Zk Junction The config^ation is geo»tric^ deterged *t ^ ^^^ „ 

from a uniform, parallel flow through the duct channel. 

ln the differential ^W'^^Ä 

SSfSSSTÄ- ^and9 L*f°: aS'furthe-or., in the function 
O*  which occurs in the righbhand term. 

In Section A, the duct is cylindrical and consequently the radius, 
slope, and <$*% terms are 

(2.D r=Yv-»+ -f% 
(the value of ^ can be seen from the subsequent formula (2.1*)). 

(2.2)   -e-a=o 
^   / u  ^\* (*or section A) 

•the orofile of Section B is an approximation for a circular arc 
*» tS Äculture a.    Vfcenapproved *. .«£^£ 
r^eTaTthf JESZ^L*'TthrductTthe shape* «pressed 
by: 

X*rv 
(2.u)    rsl + tf 

(2.5) <^.= ^ 

/0M     /A     - XI7 £.  ^A* (for section B> (2.6) CPB*-^ H+., R J 
Section C starts tangential to the parabolic Section B and expands 

conically at the angle <* . The shape terms are 

(2.7) r = \ + (** - zri ) 

(2.8)  0. = ex 
/« ^  •**  -/4-<K/V_"BäA (for section C) 

These values inserted into the differential equation (1.28) lead 
to the specific differential equation for each section. 

Section A x 

(2.10)   <pB< a.,. + -^7 <=V - ° 

AF-TB-5790 9 



Section B 

(2.11) * otr + o.„r' + Er £*r> "&xr X 

The constants arei   _x 

(2.12) E  z   *+'  . 
W-*-l R ) 

(2.13) E  - ^ **' X*>1 

Section C 

(2 

The solutions of the differential equations (2.10), (2.11), and 
(2.110 will now be determined. The complete solution, in each case, 
is the sum of the general solution of the homogeneous portion and a 
particular solution of the non-homogeneous equation. The constants 
will be determined later. 

Section A 

The solution of Equation (2.10) is x 

(2.i5) a%= cr ec «B.^   + cl>A e   «**(M) 

Section B 

The particular solution of Equation (2.11) is 

(2.16)   cx^ = E3^+E4rx 
where j_ 

(2.17)     E      = -■**•   a*M-ÜÜiU5J- 

The homogeneous part of Equation (2.11), through a simple trans- 
formation, is of the form 

(2.19)   y"4.-L.y'-[i.+(£.)a]yzo 

AF-TR-5790 10 



the solution   of which is 

(2.20)  y = Zp [****] 

The term zEy» denotes any linear combination of Bessel functions of 
order p. The general solution of the homogeneous part of Equation (2.11) 
then is such that the complete solution becomes 

Section C 

A particular solution of Equation (2.IZ4) in Section C is given by 

(2.22)   a* =&*.* 

In order to find the general solution of the homogeneous- part of 

Equation (1.28), the transformations    U.= (X- %£#;      and  a-0/»(*)= TU) 

are carried out.    The differential equation is then written 

where 
1. 

5^ ~   ec*<u+i)3t 

Equation (2.23) has the form 

(2.25)    y -*- bxy = o 

where the solution2 is given as 

(2.26) Y=%* £■£ [-V V>* **J 
Consequently, the solution of Equation (2.23) is 

(2.27) C|=U*£ttfrEs>S*] 

1 Jahnke, E. and Emde, F., Tables of Functions.    Fourth Edition. Dover 
Publications, 19^5» p. li*7. 

2 Ibid., p. 12+7. 
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If one substitutes for u and g(u), and writes the constants for 
the explicit Bessel function, one finally obtains 

(2.28) <X*rr J^. « +(*-f2 )*[C„JtCO + C«^T-t(e.)] 

(2.29) <;=E,J.*ccAi«,-)-c«»T^«.j| 
where 

Determination of the Constants 

The constants C,^, C^ , C-jj». , . . . . and C^ which occur in 
the solution for the functions o*„* , are found by equating the solutions 
of o*** * 6iven ^ Equa^ions (2.15), (2.21), and (2.28) and their first 
derivatives for the points of junction. Furthermore, there are the 
conditions that (X*^ remain finite at the throat and that they vanish 
as x tends to - ©o  . 

iff 
The condition that a 0^ tends to zero for * "* ~ °° , according to 

Equation (2.15) yields Junnediately 

(2.31) C^ = 0 

The condition that °>o^ is finite at the throat requires that the 
coefficient of N0 in Equation (2.21) is zero. 

(2.32) C4r=0 

The condition that ^o*.  and ^-o;*  are continuous at the 
junction of Sections A and B yields the value 

(2.33) c3 - ^^^yc^vE^o  

The condition that     o-»,»       and     °-°y>      are continuous at the 
junction of Sections B and C yields the values 

(2.3k) o 
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where (%r *5») * Es,** [l% C«.) J^.(e.) + I^Ce.) J.^€.)] 

e0=aE.^ixo* ^ 
By the use of the previous formulae, the expressions   a«>».      is 

determined completely.    The quantities X. ,   f*    , and   «<     which 
determine the duct geometry are determined by the specific problem 
under consideration. 

Discussion of Results 

In the previous formulae the quantities  *• , R     ,• and     **        are 
written in the general form.    This, of course, enables us to determine 
the solutions for different configurations. 

In the following analysis the values which correspond to the Vfright- 
Patterson Air Force Base 10-Foot Yfind Tunnel will be inserted.    Before 
this is done, the effect of the choice of the subsonic junction position 

X0   is studied.   Most investigations of a supersonic flow are made 
disregarding any influences of the subsonic portion of the duct, since 
there is no theoretical basis for its consideration.    It is of interest 
to determine some numerical values of the subsonic effects.    Therefore, 
a flow pattern determination will be made of a configuration which 
corresponds to the supersonic part of the 10-Foot Wind Tunnel, and 
three different subsonic junction positions. 

Accordingly, the duct shape gives 

R - 50 rQ * - .15 degrees 

XQ - -0.10, -0.20, -0.^0 

The values of  "*\     are the Bess el function arguments for which 

iP-^Oandare 

*j., - 5.S32 

V- 7.015 

*}„,-10.1735 
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The -values of E^jE-x^ , ^sp.  , and E^^ are determined by- 
Equations (2.12), (2.13), (2.17), and (2.1S), respectively. The junction 
constants C3>fc , CSw. , and Ce>L are obtained by means of Equations 
(2.33), (2.31;), and (2.35), respectively. 

Of special interest is the velocity distribution along the axis of 
the duct. The x-velocity terms found from one-dimensional theory are 
given by Equations (2.3), (2.6) and (2.9). The additional x-velocity 
along the axis caused by the perturbation potential (^ are found from 
Equation (1.32). Since 3%(«) = |, one obtains 

(2.36) $x = ^ a.%1 

Figure 6 shows the *-»,  values through Section B for %0- -,0t,-.o2 -.o*,- 
In spite of appreciable initial flow deviations at some distance upstream 
from the throat, the effects are hardly noticeable at the minimum cross 
section and in the supersonic region. A corresponding behavior is found 
for the terms a%J, a*' , etc. Accordingly, even extreme changes in 
the subsonic region are without importance for the supersonic region. 

Figure g shows the velocity distribution along the axis according 
to the one-dimensional theory, and a velocity which includes the correc- 
tions given by «..., a%a , and o.* . Beyond x - 0.5 the velocity distri- 
bution is rather smooth, showing the present configuration to be satis- 
factory. The maximum velocity deviations from the one-dimensional 
theory have a magnitude corresponding to a Mach number of about .OOI4. 
The velocity deviation at about x » O.I4 is rather large, but this is to 
be expected from the following reasoning. Point M (Figure 3) is con- 
sidered to be the junction between Sections B and C. The effect of the 
change of shape at this point propagates to the axis along the Mach 
lines MN. Upstream of MN the flow, especially along the axis, corresponds 
to the parabolic surfaces. Consequently, any change in pressure distri- 
bution caused by the transition is felt only downstream of point B. 
The one-dimensional theory (Figure S, curve <Vax ) shows the influence of 
the junctions to be right at point A. The superposition of the <$* 
value shows the occurrence of the change at x - .38. The x-coordinate 
of Point N in Figure 3, computed by an exact relationship for the Mach 
angle, is x - .307. Figure 8, curve (<?BX+$0 shows what might be 
expected from a more general reasoning. The functions o»* ', o*x' , 
and a*^' are given in Figure 7. 

A Remark on the Application to a Non-Symmetric Configuration 

Although no examples of the application for an unsymmetric flow are 
carried out, an idea of the procedure will be given. The shape of the 
duct must be expressed according to iäquation (1.6). For instance, one 
must carry out a harmonic analysis of the function r(x,w) with respect 
to «0 for various values of x. This can be done by a numerical or 
analytical evaluation of the integrals (1.6a) and (1.6b), or by means 
of a harmonic analyzer . Then the values of d-v are found from 
Equation (1.9). Following this preparation, the procedure can be carried 
out in the same way as for an axially symmetric duct. 
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Solution with <Pg« as A Function of % 

A solution of the differential equation is determined for the 
coefficient <9e-* as a power of the longitudinal position. The solution 
and its derivation will be found in the Appendix (Section IV, Part F). 

Concluding Remarks 

A method for the analysis of transonic flow through a nearly circular 
duct with only gradual changes in cross-section has been derived. One is 
finally lead to the solutions of ordinary linear differential equations. 
(Equations (1.33) and (l.3l*)). These solutions can be carried out 
numerically, or even analytically in many cases. 

Application of this method was made to a configuration similar 
to the Wright-Patterson Air Force Base 10-Foot Wind Tunnel. A velocity 
distribution through the duct was determined and the disturbances 
caused by the variation in duct shapes were computed. The velocity 
profile for the configuration is satisfactory. The subsonic influence 
in this case is small enough that the usual consideration of no subsonic 
disturbances propagated into the supersonic region is justified. 

AF-TR-5790 15 



SECTION IV 

APPENIIX A 

Derivation of the Potential Equation 

It follows from the vorticity theorems that, with certain condition 
for the initial flow which ara fulfilled in most practical cases, there 
exists a velocity potential $ (X, y, «), where the coordinates are 
shown in Figure 1. (That is, the velocity vector can be expressed as 
the gradient of a scalar function ♦ ). If one chooses an arbitrary 
function, <& (X, y, A) and determines the velocity components accordingly; 
l.e •, 

(3.1) V? = <j>- 

(3.2) v7=<|>9 

(3.3) V * fe-, 

and furthermore, determines the pressure from Bermoulli»s equation, then 
Euler's equations of motion are automatically fulfilled. Therefore, if 
a velocity potential exists, we have to check only the condition of 
continuity. The continuity equation is given by 

o-w & C? **)+ + $(?y V,) + f ^ (? Vu> = o 
If one inserts Equations (3.1), (3.2), and (3.3) into Equation (3.U) 

<"> ^C?^)+^Ce^> + ^^%-) = o 
The derivatives of p   are found from Bernoulli» s equation for three- 
dimensional flow 

(3.6)   V- + t « * ^ +   ^t) = cm .IVWt 
where i denotes the enthalpy, so that 

•c* 

Jrom the isentropic flow relations, since L  = CyTfor perfect gases. 

A.     V?o ) 
Consequently, one writes 

*£ = (<-o **- 
Or 

(3.7)   dl -z <C 4 
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If Equation (3.6) is differentiated, and Equation (3.7) is inserted 
the resulting expression is 

Or 

Writing Equation (3«*3) in detail, one obtains 

0.9)  -£; 

(5*) £=-&<** <h,+*,*,7+^% + **-$**- 

<3-8,) & = -|?Ofc**.- + <M»-■••*"$?"-) 
Now, if the partial derivatives of ^ from Equations (3.0a), (3»Sb), 

and (3»Sc) are inserted in Equation (3*5)* °ne obtains the expression 

? C«K 4>W+4>9 <Ky + *" ft") ** + * ♦« 

If one divides Equation (3»9) by ^ and collects the terms, one 
obtains the final equation 

(3.io) ^(t-^)-a^(i^^^O-^> 

This is the complete potential equation for three-dimensional flow. 
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APPENDIX B 

Transonic Law of Similarity 

The general three-dimensional equation for a steady potential flow 
is given by: 

The velocity of sound    a.    is obtained from Bernoulli's equation. 

(3.12)   o>^i±i   c^L  1=1  w* 

Where the total stream velocity: * 

*J=0^-v<}>-x+ $•"}* 

Let us consider a family of flow patterns, where each flow pattern 
is characterized by a specific value of a parameter 2. . Let the velocity 
potential be given by: • 

0.13) ^ = a*(?+»9(x,y|WHft
1CJ(5)5fJu.)+ ) 

where 

(3.12»)  *=% 

0.15)  f-^j i^1 

This hypothesis is justified, by the fact that its introduction into 
the differential equation for $ , with the limiting process S—O, 
results into a non-trivial equation for <f . Indeed substitution of 
Equations (3.12). (3.13), (3.U+), and (3.15) into the potential equation 
(Equation (3.11)) gives 

**• * YV <K*        / 

-V  of fc* Cp~~ (, - <*' ** ft V" ) +   of^CPy  t   a*a^.a.0 

The value of the sonic velocity as given in Equation (3.12) dan 
be written in terms of or and the velocity potential, and Is finally 
expressed as 

(3.17)  CL* ■ a* *-( >M"K * <P?) a* 
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The introduction of Equation (3.17) into Equation (3.16) leads to 

(3.1&) ^ 

Since 2: is small, only the terms of the lowest power of ä  prevail. 
The equation is divided by Zr1- , and one obtains 

(5.19) -Oi + t) *** <9* + <??? * ^ + ^ s ° 

This equation shall be referred to as the simplified transonic potential 
equation. 

Let us consider Equations (3.13), (3.1U), and (3.15) for small 
values of 

(3.20) 4> : a (Hi (^(K.y.u^ 

The velocity components given by 

(3.2i) <^ = <x* + <x* i cpur(x, y,**0 

(3.22) ^sa^a^^Cx,?,^ 
(3.23) 4-L^o?a% ^(^y,«-') 

y       if 
Let us consider flow patterns which belong to different values of 

the parameter 2 . in such flow patterns the points having the same x 
and y values are called corresponding points. From Equations (3.12*) 
and (3.15) it is seen that at corresponding points, the values of x" 
are the same and the y values vary as Z~*. At corresponding points 
the deviation of the x velocity is proportional to2 , the y velocity 
and the cu velocity are both proportional to f» . The significance of 

a  is found from the conditions at infinity. At infinity the 
deviation of the X velocity from the sonic velocity is proportional to 
the difference of the free stream Mach number from one. Therefore, 
£ is also proportional to the difference between the stream llach 

number and one. 

For * ■ 0 the streamlines have a constant y. The deviations of 
the streamlines from a line ( 7 " constant) are found by integrating the 
slope of the streamlines. The component of the velocity deviations ofu», 
as well as the deviation of 7, behaves proportional to zi  . Conse- 
quently, the deviation of the^treamlines from the lines y - constant, 
<*» » constant, behave like a"*" . To summarize the transonic law of 
similarity: 
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1. The x coordinates of corresponding points are the same 

2. The y coordinates of corresponding points are proportional 
to 2't 

3. The difference between the x velocity and the sonic velocity 
is proportional to z. 

h*   The difference between the pressure and the sonic pressure is 
proportional to £ 

5. The deviation of the streamlines from lines of constant 7 and 
<*> is proportional to ii 

APPENDIX C 

Boundary Condition 

Along a body at rest the velocity vector is parallel to the surface; 
that is, the component of flow normal to the surface is zero. To express 
the relation, let the unit vectors in the direction of increasing x, y 
and a* coordinates be Ux> Uy, and Uw , respectively. The total 

velocity vector then is expressed by 

(3.2W  <^[0 + <P0tU + cpYUy + ^ Uw] 
The vector component normal to the duct surface is given by 

The scalar product of these two terms is the component of the velo- 
city vector normal to the surface. According to the boundary condition, 
this component is zero. Then one obtains 

(3.26)   -OL*(|+ CP/) |X + of <py - otg*  ^=o 

The assumption that   H   is a small quantity implies that the . 
slope of the duct and surface is gradual, and consequently    ^*-        and ■*x- 
are small quantities. * ^*° 

Therefore, the expressions     CP„ —        and    d}^ ^LX-       are of 

second order, and can be neglected in Equation (3.26).    This results in 

0.27)  -^ + cPy = o 
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APPENDIX D 

Derivation of the Basic Flow Velocity 

The basic flow velocity <?e* *■ the velocity obtained from one- 
dimensional flow theory, and is expressed as a function of the duct radius 
at the cross section under consideration. 

The continuity equation is written 

(3.2B) rx TT p V =r**TT p ex. 

where V is the absolute value of the velocity. Since ?V is a function 
of V, it can be developed with respect to (V - a*). Une then obtains 

(5.29) f V = 9 o. _i*c* + 0 -eT2 

If one introduces the relation 

(3.30) Ar ^V-Y-0 

the continuity equation is rewritten as 

If r is small, the higher order terms can be neglected so that 

Since     <$>^   -^-J » the basic flow velocity is expressed by 

APPENDIX E 

Analytical Representation of the Constants I.w K«^ ,TV^,, and Kv 

An analytical representation is sought for the integrals that occur 
in the expressions X.^ and K.^. The ***■* t«m X.^is 

(3.3?) x.„s r Y £.;cY)<iy • r Y ^(>,v^ h 
Integrating^ -IVs' 

?Ibid., p. 1U5 
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Then* since 

(5-35) irstUE(V)+VciTr)] 
The values for the arguments of the Bessel function  "Z0 (*}•»» y) were 

chosen so that    ^   jffi'     ■ 0.    However, it is also true that  +2s£l)-TMi 
so that Equation (3.35) simplifies to the analytical expression    ^"1 

OJ6) I.M=i-V^y> 

The term K«** is defined by 

0.37) K.r= J" yä £ (Y) 4/= j" y» ^.(i y) ly 
If one denotes the argument by **- = {."l0fK y ) Equation (3.37) is rewrit- 
ten as ' 

or simply 

v=^r^-^c-v 
An integration^ gives the relationship 

or 

(5A0)   K .,= ^. [^ ^W*i^ I. OV 4 u T, (-)] y 
If the Equation (3.^0) is rewritten in terms of y, and the limits 

of y ■ 0 and y - 1 are inserted, the new relation becomes 

Since   —d«t  = "^«^"0 = ° the Ko/». is reduced to 

w 2. 
K^Ä ^J^C-vy) (3./*2) 

1* Ibid., p. 31*5 
5 Ibid., p. li*5 
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The term   ^v»*   *s defined as 

(5.1,5) T^*£I a^c-/>47= 5^J v V(%. v)iy 
It is seen that the integration6 leads to the expression 

(5.Ü.) xvr = f [V (% i)-X., (% y)T„, (^vry)]; 
Also? 

(5.i+5) 

(3.^6) 

*P-.Cy)=i%^>-*_2TCy> 

The substitution of Equations (3.1+5) and (3«^6) into Equation (3.14+) 
gives the new relation 

(5.w) n^ = £ LVC^ y) + ■$: (*i^ y\) 1 
where  Tv C^y^f") denotes the firwt derivative of ^Jv with respect 
to the argument. 

Since the arguments are chosen such that  3v C^Jvyi Y'~ ° anc* 
the integration limits are y - 0 and y - 1, the value of  Xv**. ** 

The term Kvj*. is written 

Substituting the following differential equation 

«•5°) 37 t> ^^y)] +[Y % - £] T, (>r y)=ö 
into Equation ^3»h9)t  one obtains 

o*) KV|fc= ^ KYv $ [y ^ Cvv>>y W J T 3*(v)*r 

6 Ibid., p. 11*6 
7 Ibid., p. 345 
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Integrating by parts, one can rewrite Equation (3.51) 

Further integration and the substitution of the limits of y - 0 
and y ■ 1, leads to the relation 

0.5» K,^ +*L-xcn^yvX(^y)i 
Since   f* C^^yj^Othe analytical representation of    V<v^. is 

°-ft)Kv = fcT,(vV) 
APPENDIX F 

Solution of Equation (1.33) if 3B* is Given by X * 

The solution of the differential equation (1.33) is determined 
for a more general case. Let the coefficients of the differential equation 
be such that it is a power t of the longitudinal position. 

(3.55) 3>Bj^** 
This, when inserted into the differential equation gives 

(3.56) GL* \ * of ' + -H / **iA a.* = O 

In order to remove the inconvenient power   >**        in the coefficient 
°f  °««i-. y let IB introduce a new independent variable   u.  by the 
equation   u. = Xk     where k is a suitable constant which is chosen later. 
Then one obtains 

(3.57) A-£r = k *«-'   J4> 

If one writes A- -^J- and inserts Equations (3.57) and (3.58) 

into Equation (3.56), the following equation will result 

(,59)  % + r± ig*. + $&*& 
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where 

(5.60) Y^-i^f^ 

If y< =. \ - Z-  ,  Equation (3.59) simplifies to 

(3.61) ±%*-%. + i- if£* * £» *•% = O 
du     ^   du.     K    ' 

Equation (3.61) has the following form 

(5.62) oS+(i=£Zr)a! + (V+tz?)^° . 

s the solution of which is given by 

(3.63) c^=U*2:p(^iA) 

where 2: » is a Bessel function of p order. 

Let us set the following relations: 

(5.6U)  S = -gT" 

(3.65) T,-s=lT!" 

(3.66) ? -   ($*)* 
The solution of the differential equation (3.61) involving coeffi- 

cients that are powers of x is expressed as 

(3.67) CX.%.  = ^S ^Rv)^] 
where 

0.66)    S = £| 

s Ibid., p. 1^6 
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FIG. I- CYLINDRICAL 

COORDINATE    SYSTEM. 
FIG.2- SPACE   ELEMENT   IN 

CYLINDRICAL   COORDINATE   SYSTEM. 

FIG. 3-PROPAGATION     OF   DISTURBANCES    FROM   SUPERSONIC    JUNCTION. 
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